Cell Tour

Organelles

- Specialized structures within eukaryotic cells that perform different functions...
- Analogous to small plastic bags within a larger plastic bag.
- Perform functions such as:
 - protein production (insulin, lactase...)
 - Carbohydrates, lipids...

Organelles of Note: The Nucleus

• Contains the genetic material (DNA), controls protein synthesis.

DNA --> RNA --> Protein

- Surrounded by a *double* membrane with pores
- Contains the chromosomes = fibers of coiled DNA & protein

Chromosomes

All Chromosomes from a single cell

One chromosome Pulled apart

A single chromosome Showing the amount of DNA within

Mitochondria

- Generate cellular energy in the form of ATP molecules
- ATP is generated by the systematic breakdown of glucose = cell respiration
- Also, surrounded by 2 membrane layers
- Contain their own DNA!
- A typical liver cell may have 1,700 mitoch.
- All your mitochondria come from your mother..

Ribosomes

- Size ~20nm
- Made of two subunits (large and small)
- Composed of RNA and over 30 proteins
- Come in two sizes...80S and 70S
- S units = Sedimentation speed

Ribosomes

- DNA --> RNA --> Protein
- The RNA to Protein step (termed translation) is done on cytoplasmic protein/RNA particles termed *ribosomes*.
- Contain the protein synthesis machinery
- Ribosomes bind to RNA and produce protein.

Endoplasmic Reticulum = ER

- Cytoplasm is packed w. membrane system which move molecules about the cell and to outside
- An internal cellular subway system
- Outer sfc of ER may be smooth (SER)
- Or Rough (RER)
- ER functions in lipid and protein synthesis and transport

Golgi Complex

- Stacks of membranes...
- Involved in modifying proteins and lipids into final form...
 - Adds the sugars to make glyco-proteins and glycolipids
- Also, makes vesicles to release stuff from cell

ER to Golgi network

Anim

Lysosomes

- important in breaking down bacteria and old cell components
- contains many digestive enzymes
- The 'garbage disposal' or 'recycling unit' of a cell
- Malfunctioning lysosomes result in some diseases (Tay-Sachs disease)
- Or may self-destruct cell such as in asbestosis

Peroxysome

- important in breaking down fatty acids
- Contain catalase
 - Breaks down many substances
 - Release peroxide into the cell
 - Most also contain enzymes that use peroxide to break down other substances

Cell Membrane

Phospholipid Bilayer

Cell Membrane

Cell Membrane

Cytoskeleton

Composed of 3 filamentous proteins:

Microtubules
Microfilaments
Intermediate filaments

 All produce a complex network of structural fibers within cell

The specimen is human lung cell double-stained to expose microtubules and actin microfilaments using a mixture of FITC and rhodamine-phalloidin. Photo taken with an Olympus microscope.

Animal Cells

Microtubules

- Universal in eukaryotes
- Involved in cell shape, mitosis, flagellar movement, organelle movement
- Long, rigid, hollow tubes
 ~25nm wide
- Composed of α and β tubulin (small globular proteins)

http://www.cytochemistry.net/Cell-biology/

Microfilaments

- Thin filaments (7nm diam.) made of the globular protein *actin*.
- Actin filaments form a helical structure
- Involved in cell movement (contraction, crawling, cell extensions)

end

Intermediate filaments

- Fibers ~10nm diam.
- Very stable, heterogeneous group
- Examples:

Lamins: hold nucleus shape

Keratin: in epithelial cells

Vimentin: gives structure to

connective tissue

Neurofilaments: in nerve cells

Image of Lamins which reside in the nucleus just under the nuclear envelope

Cell Motility: Flagella & Cilia

- Both cilia & flagella are constructed the same
- In cross section: 9+2 arrangement of microtubules (MT)
- MTs slide against each other to produce movement

Human Sperm: TOTO-3 iodide for DNA (blue) and Nile red for membrane lipid (red)

How Flagella Move a Cell

Only in Animal Cells: Centrioles

© W.P. Armstrong 2003

Centriole & Basal Body (9 + 0 pattern)

A ring of 9 microtubule triplets with
no microtubules in the center.

Flagellum & Cilium (9 + 2 pattern)
A ring of 9 microtubule doublets
with 2 microtubules in the center.

Cross section of centriole and flagellum showing the distinctive arrangement of the microtubules.

Plant Cells

Chloroplasts

- Found in plants, algae and some bacteria. Responsible for capturing sunlight and converting it to food = photosynthesis.
- Surrounded by 2 membranes
- And...contain DNA

Cell Wall

- Contains cellulose for rigidity
- Function to support cell

Central Vacuole

- Take up most of the cell's internal space
- Stores enzymes, wastes, anything that needs to be kept separate from the rest of the cell

